In the field of antibody engineering, an essential task is to design a novel antibody whose paratopes bind to a specific antigen with correct epitopes. Understanding antibody structure and its paratope can facilitate a mechanistic understanding of its function. Therefore, antibody structure prediction from its sequence alone has always been a highly valuable problem for de novo antibody design. AlphaFold2, a breakthrough in the field of structural biology, provides a solution to predict protein structure based on protein sequences and computationally expensive coevolutionary multiple sequence alignments (MSAs). However, the computational efficiency and undesirable prediction accuracy of antibodies, especially on the complementarity-determining regions (CDRs) of antibodies limit their applications in the industrially high-throughput drug design. To learn an informative representation of antibodies, we employed a deep antibody language model (ALM) on curated sequences from the observed antibody space database via a transformer model. We also developed a novel model named xTrimoABFold to predict antibody structure from antibody sequence based on the pretrained ALM as well as efficient evoformers and structural modules. The model was trained end-to-end on the antibody structures in PDB by minimizing the ensemble loss of domain-specific focal loss on CDR and the frame-aligned point loss. xTrimoABFold outperforms AlphaFold2 and other protein language model based SOTAs, e.g., OmegaFold, HelixFold-Single, and IgFold with a large significant margin (30+\% improvement on RMSD) while performing 151 times faster than AlphaFold2. To the best of our knowledge, xTrimoABFold achieved state-of-the-art antibody structure prediction. Its improvement in both accuracy and efficiency makes it a valuable tool for de novo antibody design and could make further improvements in immuno-theory.
translated by 谷歌翻译
The binding problem is one of the fundamental challenges that prevent the artificial neural network (ANNs) from a compositional understanding of the world like human perception, because disentangled and distributed representations of generative factors can interfere and lead to ambiguity when complex data with multiple objects are presented. In this paper, we propose a brain-inspired hybrid neural network (HNN) that introduces temporal binding theory originated from neuroscience into ANNs by integrating spike timing dynamics (via spiking neural networks, SNNs) with reconstructive attention (by ANNs). Spike timing provides an additional dimension for grouping, while reconstructive feedback coordinates the spikes into temporal coherent states. Through iterative interaction of ANN and SNN, the model continuously binds multiple objects at alternative synchronous firing times in the SNN coding space. The effectiveness of the model is evaluated on synthetic datasets of binary images. By visualization and analysis, we demonstrate that the binding is explainable, soft, flexible, and hierarchical. Notably, the model is trained on single object datasets without explicit supervision on grouping, but successfully binds multiple objects on test datasets, showing its compositional generalization capability. Further results show its binding ability in dynamic situations.
translated by 谷歌翻译
The role of mobile cameras increased dramatically over the past few years, leading to more and more research in automatic image quality enhancement and RAW photo processing. In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based image signal processing (ISP) pipeline replacing the standard mobile ISPs that can run on modern smartphone GPUs using TensorFlow Lite. The participants were provided with a large-scale Fujifilm UltraISP dataset consisting of thousands of paired photos captured with a normal mobile camera sensor and a professional 102MP medium-format FujiFilm GFX100 camera. The runtime of the resulting models was evaluated on the Snapdragon's 8 Gen 1 GPU that provides excellent acceleration results for the majority of common deep learning ops. The proposed solutions are compatible with all recent mobile GPUs, being able to process Full HD photos in less than 20-50 milliseconds while achieving high fidelity results. A detailed description of all models developed in this challenge is provided in this paper.
translated by 谷歌翻译
Solving variational image segmentation problems with hidden physics is often expensive and requires different algorithms and manually tunes model parameter. The deep learning methods based on the U-Net structure have obtained outstanding performances in many different medical image segmentation tasks, but designing such networks requires a lot of parameters and training data, not always available for practical problems. In this paper, inspired by traditional multi-phase convexity Mumford-Shah variational model and full approximation scheme (FAS) solving the nonlinear systems, we propose a novel variational-model-informed network (denoted as FAS-Unet) that exploits the model and algorithm priors to extract the multi-scale features. The proposed model-informed network integrates image data and mathematical models, and implements them through learning a few convolution kernels. Based on the variational theory and FAS algorithm, we first design a feature extraction sub-network (FAS-Solution module) to solve the model-driven nonlinear systems, where a skip-connection is employed to fuse the multi-scale features. Secondly, we further design a convolution block to fuse the extracted features from the previous stage, resulting in the final segmentation possibility. Experimental results on three different medical image segmentation tasks show that the proposed FAS-Unet is very competitive with other state-of-the-art methods in qualitative, quantitative and model complexity evaluations. Moreover, it may also be possible to train specialized network architectures that automatically satisfy some of the mathematical and physical laws in other image problems for better accuracy, faster training and improved generalization.The code is available at \url{https://github.com/zhuhui100/FASUNet}.
translated by 谷歌翻译
由于非平稳性,现实世界多变量时间序列(MTS)的分布会随着时间而变化,称为分布漂移。大多数现有的MT预测模型都会极大地遭受分销漂移的影响,并随着时间的推移降低了预测性能。现有方法通过适应最新到达数据或根据未来数据得出的元知识进行自我纠正来解决分布漂移。尽管在MT的预测中取得了巨大的成功,但这些方法几乎无法捕获固有的分布变化,尤其是从分布的角度来看。因此,我们提出了一个新型的框架时间条件变化自动编码器(TCVAE),以对MTS中历史观察结果和未来数据之间的动态分布依赖性进行建模,并将依赖性作为时间条件分布推断为利用潜在变量。具体而言,新型的颞鹰注意机制代表了随后馈入馈送前网络的时间因素,以估计潜在变量的先前高斯分布。时间因素的表示进一步动态地调整了基于变压器的编码器和解码器的结构,以利用门控注意机制来变化。此外,我们引入条件连续归一化流量,以将先前的高斯转化为复杂且无形式的分布,以促进对时间条件分布的灵活推断。在六个现实世界MTS数据集上进行的广泛实验表明,与最先进的MTS预测基线相比,TCVAE的出色鲁棒性和有效性。我们进一步说明了TCVAE通过多方面的案例研究和现实情况下的可视化来说明TCVAE的适用性。
translated by 谷歌翻译
用户嵌入(用户的矢量化表示)对于推荐系统至关重要。已经提出了许多方法来为用户构建代表性,以找到用于检索任务的类似项目,并且已被证明在工业推荐系统中也有效。最近,人们发现使用多个嵌入式代表用户的能力,希望每个嵌入代表用户对某个主题的兴趣。通过多息表示,重要的是要对用户对不同主题的喜好进行建模以及偏好如何随时间变化。但是,现有方法要么无法估算用户对每个利息的亲和力,要么不合理地假设每个用户的每一个利息随时间而逐渐消失,从而损害了候选人检索的召回。在本文中,我们提出了多功能偏好(MIP)模型,这种方法不仅可以通过更有效地使用用户的顺序参与来为用户产生多种利益因此,可以按比例地从每个利息中检索候选人。在各种工业规模的数据集上进行了广泛的实验,以证明我们方法的有效性。
translated by 谷歌翻译
Machine learning methods have revolutionized the discovery process of new molecules and materials. However, the intensive training process of neural networks for molecules with ever-increasing complexity has resulted in exponential growth in computation cost, leading to long simulation time and high energy consumption. Photonic chip technology offers an alternative platform for implementing neural networks with faster data processing and lower energy usage compared to digital computers. Photonics technology is naturally capable of implementing complex-valued neural networks at no additional hardware cost. Here, we demonstrate the capability of photonic neural networks for predicting the quantum mechanical properties of molecules. To the best of our knowledge, this work is the first to harness photonic technology for machine learning applications in computational chemistry and molecular sciences, such as drug discovery and materials design. We further show that multiple properties can be learned simultaneously in a photonic chip via a multi-task regression learning algorithm, which is also the first of its kind as well, as most previous works focus on implementing a network in the classification task.
translated by 谷歌翻译
短期内存(LSTM)和变压器是两个流行的神经结构用于自然语言处理任务。理论结果表明,两者都是图灵完成的,可以代表任何无论如何的语言(CFL)。在实践中,经常观察到变压器模型具有比LSTM更好的表示功率。但原因几乎没有明白。我们研究了LSTM和变压器之间的实际差异,并提出了基于潜空间分解模式的解释。为了实现这一目标,我们介绍了Oracle培训范式,这迫使LSTM和变压器的潜在表示的分解,并监督相应CFL的推动自动化(PDA)的转换。通过强制分解,我们表明LSTM和变压器在学习CFL中的性能上限是关闭:它们都可以模拟堆栈并与状态转换一起执行堆栈操作。然而,没有强制分解导致LSTM模型的故障捕获堆叠和堆叠操作,同时对变压器模型产生边缘影响。最后,我们将原型PDA的实验连接到真实的解析任务,以重新验证结论
translated by 谷歌翻译
最近,立体声匹配基准的记录由端到端视差网络不断破碎。但是,这些深层模型的域适应能力非常有限。解决此类问题,我们提出了一种名为ADASTEREO的新型域自适应方法,该方法旨在对准深度立体声匹配网络的多级表示。与以前的方法相比,我们的ADASTEREO实现了更标准,完整有效的域适应管道。首先,我们提出了一种用于输入图像级对准的非对抗渐进颜色传输算法。其次,我们设计一个有效的无参数成本归一化层,用于内部特征级别对齐。最后,提出了一种高效的辅助任务,自我监督的遮挡感知重建以缩小输出空间中的间隙。我们进行密集的消融研究和分解比较,以验证每个提出的模块的有效性。没有额外推断开销,只有略微增加训练复杂性,我们的Adastereo模型在多个基准上实现了最先进的跨领域性能,包括Kitti,Middrbury,Eth3D和驾驶员,甚至优于一些状态 - 与目标域的地面真相Fineetuned的差异网络。此外,基于两个额外的评估指标,从更多的观点进一步揭示了我们域 - 自适应立体声匹配管道的优越性。最后,我们证明我们的方法对各种域适配设置具有强大,并且可以轻松地集成到快速适应应用方案和现实世界部署中。
translated by 谷歌翻译
动机:多型药物 - 药物相互作用(DDI)的计算预测有助于减少多药物治疗中的意外副作用。虽然现有的计算方法实现了鼓舞人心的结果,但它们忽略了药物的作用主要是由其化学结构引起的。此外,他们的可解释性仍然很弱。结果:在本文中,假设两个给定药物之间的相互作用是由其本地化学结构(子结构)引起的,并且它们的DDI类型由不同的子结构组之间的连接确定,我们设计了一个新的子结构 - 浪费张力神经网络DDI预测网络模型(STNN-DDI)。所提出的模型学习了(子结构,替换类型,子结构)三元组的3-D张量,其表征了子结构 - 子结构相互作用(SSI)空间。根据具有特定化学意义的预定义子结构的列表,药物中的药物映射到该SSI空间使得STNN-DDI能够以可解析的方式以统一的形式在转换和电感方案中执行多型DDI预测。基于深度学习的最先进的基线的比较是STNN-DDI的优越性,具有AUC,AUPR,精度和精度的显着提高。更重要的是,案例研究通过揭示其对特定DDI中的DDI类型的兴趣和揭示交互类型特定的子结构对的药物的关注子结构对的解释性。总之,STNN-DDI提供了预测DDIS的有效方法,以及解释药物之间的相互作用机制。
translated by 谷歌翻译